Re-evaluation of learned information inDrosophila

    loading  Checking for direct PDF access through Ovid

Abstract

Animals constantly assess the reliability of learned information to optimize their behaviour. On retrieval, consolidated long-term memory can be neutralized by extinction if the learned prediction was inaccurate1. Alternatively, retrieved memory can be maintained, following a period of reconsolidation during which it is labile2. Although extinction and reconsolidation provide opportunities to alleviate problematic human memories3,4,5, we lack a detailed mechanistic understanding of memory updating. Here we identify neural operations underpinning the re-evaluation of memory in Drosophila. Reactivation of reward-reinforced olfactory memory can lead to either extinction or reconsolidation, depending on prediction accuracy. Each process recruits activity in specific parts of the mushroom body output network and distinct subsets of reinforcing dopaminergic neurons. Memory extinction requires output neurons with dendrites in the α and α′ lobes of the mushroom body, which drive negatively reinforcing dopaminergic neurons that innervate neighbouring zones. The aversive valence of these new extinction memories neutralizes previously learned odour preference. Memory reconsolidation requires the γ2α′1 mushroom body output neurons. This pathway recruits negatively reinforcing dopaminergic neurons innervating the same compartment and re-engages positively reinforcing dopaminergic neurons to reconsolidate the original reward memory. These data establish that recurrent and hierarchical connectivity between mushroom body output neurons and dopaminergic neurons enables memory re-evaluation driven by reward-prediction error.

Depending on prediction accuracy at the time of memory recall, specific mushroom body output neurons drive different combinations of dopaminergic neurons to extinguish or reconsolidate appetitive memory in Drosophila.

Related Topics

    loading  Loading Related Articles