An intraluminal stent facilitates light-activated vascular anastomosis

    loading  Checking for direct PDF access through Ovid

Abstract

BACKGROUND

Photochemical tissue bonding (PTB) is a sutureless, light-activated technique that produces a watertight, microvascular repair with minimal inflammation compared to standard microsurgery. However, it is practically limited by the need for a clinically viable luminal support system. The aim of this study was to evaluate a hollow biocompatible stent to provide adequate luminal support to facilitate vascular anastomosis using the PTB technique.

METHODS

Forty rats underwent unilateral femoral artery transection. Five rats were used to optimize the stent delivery method, and the remaining 35 rats were randomized into three groups: (1) standard suture repair with 10-0 nylon microsuture (SR), (2) standard suture repair over the stent (SR + S), or (3) PTB repair over stent (PTB + S). For the PTB group, a 2-mm overlapping cuff was painted with 0.1% (wt/vol) Rose Bengal then illuminated for 30 seconds on each side (532 nm, 0.5 W/cm2, 30 J/cm2). Anastomotic leak and vessel patency (immediate, 1 hour, and 1 week postoperatively) were assessed.

RESULTS

Vessels in all three groups were patent immediately and at 1 hour postoperatively. After 1 week, all animals displayed patency in the SR group, while only 5 of 14 and 2 of 8 surviving animals had patent vessels in the PTB + S and SR + S groups, respectively.

CONCLUSIONS

This study demonstrated successful use of an intraluminal stent for acute microvascular anastomosis using the PTB technique. However, the longer-term presence of the stent at the anastomotic site led to thrombosis in multiple cases. A rapidly dissolvable stent should facilitate a light-activated microvascular anastomosis with excellent long-term patency.

Related Topics

    loading  Loading Related Articles