Cocrystal solubility product analysis – Dual concentration-pH mass action model not dependent on explicit solubility equations

    loading  Checking for direct PDF access through Ovid


A novel general computational approach is described to address many aspects of cocrystal (CC) solubility product (Ksp) determination of drug substances. The CC analysis program, pDISOL-X, was developed and validated with published model systems of various acid-base combinations of active pharmaceutical ingredients (APIs) and coformers: (i) carbamazepine cocrystal systems with 4-aminobenzoic acid, cinnamic acid, saccharin, and salicylic acid, (ii) for indomethacin with saccharin, (iii) for nevirapine with maleic acid, saccharin, and salicylic acid, and (iv) for gabapentin with 3-hydroxybenzoic acid. In all systems but gabapentin, the coformer is much more soluble than the API. The model systems selected are those with available published dual concentration-pH data, one set for the API and one set for the coformer, generally measured at eutectic points (thermodynamically-stable three phases: solution, cocrystal, and crystalline API or coformer). The carbamazepine-cinnamic acid CC showed a substantial elevation in the API equilibrium concentration above pH 5, consistent with the formation of a complex between carbamazepine and cinnamate anion. The analysis of the gabapentin:3-hydroxybenzoic acid 1:1 CC system indicated four zones of solid suspensions: coformer (pH < 3.25), coformer and cocrystal eutectic (pH 3.25–4.44), cocrystal (pH 4.44–5.62), and API (pH > 5.62). The general approach allows for testing of many possible equilibrium models, including those comprising drug-coformer complexation. The program calculates the ionic strength at each pH. From this, the equilibrium constants are adjusted for activity effects, based on the Stokes-Robinson hydration theory. The complete speciation analysis of the CC systems may provide useful insights into pH-sensitive dissolution effects that could potentially influence bioavailability.

Related Topics

    loading  Loading Related Articles