A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice

    loading  Checking for direct PDF access through Ovid

Abstract

Influenza A H7N9 virus is the latest emerging pandemic threat, and has rapidly diverged into three clades, demanding a H7N9 virus vaccine with broadened protection against unmatched strains. Hemagglutinin (HA)-based structural design approaches for stabilizing HA proteins have provided excitingly promising results. However, none of the HA-based structural design approaches has been applied to a recombinant replicative influenza virus. Here we report that our HA-based structural design approach is a first in the field to generate a recombinant replicative H7N9 virus (H7N9-53TM) showing broadened protection. The H7N9-53TM contains a replaced H3 HA transmembrane domain (TM) in its HA protein. In mice, the inactivated H7N9-53TM vaccine induced significantly higher HI titers, HA-specific IgG titers, and IFN-γ production than the corresponding H7N9-53WT inactivated virus vaccine containing wild-type HA. More excitingly, mice immunized with the H7N9-53TM showed full protection against homologous (H7N9-53) and interclade (H7N9-MCX) challenges with minimal weight loss, no detectable lung viral loads, and no apparent pulmonary lesions and inflammation, while mice immunized with the H7N9-53WT showed partial protection (only 60% against H7N9-MCX) with severe weight loss, detectable lung viral loads, and severe pulmonary lesions and inflammation. In summary, this study presents a better vaccine candidate (H7N9-53TM) against H7N9 pandemics. Furthermore, our HA-based structural design approach would be conceivably applicable to other subtype influenza viruses, especially the viruses from emerging pandemic and epidemic influenza viruses such as H5N1 and H1N1.

Related Topics

    loading  Loading Related Articles