Three new piscidins from orange-spotted grouper (Epinephelus coioides): Phylogeny, expression and functional characterization

    loading  Checking for direct PDF access through Ovid

Abstract

The present study reports the identification, and characterization of three new putative piscidin paralogues, ecPis-2, ecPis-3 and ecPis-4, from orange-spotted grouper (Epinephelus coioides). The cDNA of the three piscidins with the 207, 216, and 231 nt open reading frame encoded respectively a 68-, 71-, and 76-amino acid preprotein consisting of the predicted signal peptide, and putative mature peptide and prodomain. The phylogenetic analysis indicated that multiple piscidin paralogues in one fish species are highly diversified, the analysis suggested that the piscidins should be a family belonging to the superfamily of ancient cationic, linear, and amphipathic host defence peptides widespread across invertebrate and vertebrate taxa comprising insect cecropins and ceratotoxins, and the amphibian dermaseptins. The synthetic putative mature peptides, ecPis-2S, ecPis-3S and ecPis-4S, had strong activities against bacterial and fungal species. EcPis-3S exhibited powerful activity against the infective stage of Cryptocaryon irritans, theronts. The full length ecPis-2 and ecPis-4 by removal of signal peptide, ecPis-2L and ecPis-4L respectively, had potency against bacterial, fungal and parasitic species. The peptide ecPis-2S was proved to exist in spleen of orange-spotted grouper by HPLC followed by ESI-LCMS analysis. Basal transcriptions of ecPis-2, ecPis-3 and ecPis-4 were detected not only in the potential sites of pathogen entry such as gills, skin and intestine, but also in tissues such as head kidney, trunk kidney, blood cells, and spleen with highly abundant immune cells, however different paralogues expressed constitutively with different levels in the tissues. In addition, the expression of ecPis-2, ecPis-3 and ecPis-4 was upregulated in orange-spotted grouper challenged by Vibrio Parahaemolyticus, in different tissues at different time point after bacteria injection. These results support ecPis-2, ecPis-3 and ecPis-4 being the important immune-related genes in orange-spotted grouper innate immune system and playing multifunctional and complementary roles following their structural and functional diversification, and expression pattern difference. Finally, this study facilitates the evaluation of ecPis-2S, 2L, ecPis-3S, and ecPis-4S, -4L as potential templates of therapeutic agents against pathogens.

    loading  Loading Related Articles