Measurement of skin surface dose distributions in radiation therapy using poly(vinyl alcohol) cryogel dosimeters

    loading  Checking for direct PDF access through Ovid

Abstract

In external beam radiation therapy (EBRT), skin dose measurement is important to evaluate dose coverage of superficial target volumes. Treatment planning systems (TPSs) are often inaccurate in this region of the patient, so in vivo measurements are necessary for skin surface dose estimation. In this work, superficial dose distributions were measured using radiochromic translucent poly(vinyl alcohol) cryogels. The cryogels simultaneously served as bolus material, providing the necessary buildup to achieve the desired superficial dose. The relationship between dose to the skin surface and dose measured with the bolus was established using a series of oblique irradiations with gantry angles ranging from 0° to 90°. EBT-2 Gafchromic film was placed under the bolus, and the ratio of bolus-film dose was determined ranging from 0.749 ± 0.005 to 0.930 ± 0.002 for 0° and 90° gantry angles, respectively. The average ratio over 0–67.5° (0.800 ± 0.064) was used as the single correction factor to convert dose in bolus to dose to the skin surface. The correction factor was applied to bolus measurements of skin dose from head and neck intensity-modulated radiation therapy (IMRT) treatments delivered to a RANDO phantom. The resulting dose distributions were compared to film measurements using gamma analysis with a 3%/3 mm tolerance and a 10% threshold. The minimum gamma pass rate was 95.2% suggesting that the radiochromic bolus may provide an accurate estimation of skin surface dose using a simple correction factor. This study demonstrates the suitability of radiochromic cryogels for superficial dose measurements in megavoltage photon beams.

    loading  Loading Related Articles