Early posthatch thermal stress affects breast muscle development and satellite cell growth and characteristics in broilers

    loading  Checking for direct PDF access through Ovid

Abstract

Heat or cold stress, can disrupt well-being and physiological responses in birds. This study aimed to elucidate the effects of continuous heat exposure in the first 2 wk of age on muscle development in broilers, with an emphasis on the pectoralis muscle satellite cell population. Chicks were reared for 13 d under either commercial conditions or a temperature regime that was 5°C higher. Body and muscle weights, as well as absolute muscle growth were lower in heat-exposed chicks from d 6 onward. The number of satellite cells derived from the experimental chicks was higher in the heat-treated group on d 3 but lower on d 8 and 13 compared to controls. This was reflected in a lower number of myonuclei expressing proliferating nuclear cell antigen in cross sections of pectoralis major muscle sampled on d 8. However, a TUNEL assay revealed similar cell survival in both groups. Mean myofiber diameter and distribution were lower in muscle sections sampled on d 8 and 13 in heat-treated versus control group, suggesting that the lower muscle growth is due to changes in muscle hypertrophy. Oil-Red O staining showed a higher number of satellite cells with lipids in the heat-treated compared to the control group on these days. Moreover, lipid deposition was observed in pectoralis muscle cross sections derived from the heat-treated chicks on d 13, whereas the controls barely exhibited any lipid staining. The gene and protein expression levels of CCAAT/enhancer binding protein β in pectoralis muscle from the heat-treated group were significantly higher on d 13 than in controls, while myogenin levels were similar. The results suggest high sensitivity of muscle progenitor cells in the early posthatch period at a time when they are highly active, to chronic heat exposure, leading to impaired myogenicity of the satellite cells and increased fat deposition.

Related Topics

    loading  Loading Related Articles