Proprotein convertase inhibition: Paralyzing the cell's master switches

    loading  Checking for direct PDF access through Ovid

Abstract

Proprotein convertases are serine proteases responsible for the cleavage and subsequent activation of protein substrates, many of them relevant for the development of an ample variety of diseases. Seven of the PCs, including furin and PACE4, recognize and hydrolyze the C-terminal end of the general sequence RXRR/KXR, whereas PCSK-9 recognizes a series of non-basic amino acids. In some systems, PC-mediated substrate activation results in the development of pathological processes, such as cancer, endocrinopathies, and cardiovascular and infectious diseases.

After establishing PCs as relevant contributors to disease processes, research efforts were directed towards the development of inhibition strategies, including small and large molecules, anti-sense therapies, and antibody-based therapies. Most of these inhibitors mimic the consensus sequence of PCs, blocking the active site in a competitive manner. The most promising inhibitors were designed as bioengineered proteins; however, some non-protein and peptidomimetic agents have also proved to be effective.

These efforts led to the design of pre-clinical studies and clinical trials utilizing inhibitors to PCs. Although the initial studies were performed using non-selective PCs inhibitors, such as CMK, the search for more specific, and compartmentalized selective inhibitors resulted in specific activities ascribed to some, but not all of the PCs. For instance, PACE4 inhibitors were effective in decreasing prostate cancer cell proliferation, and neovascularization. Decreased metastatic ovarian cancer utilizing furin inhibitors represents one of the major endeavors, currently in a phase II trial stage. Antibodies targeting PCSK-9 decreased significantly the levels of HDL-cholesterol, in a phase III trial.

The study of Proprotein convertases has reached a stage of maturity. New strategies based on the alteration of their activity at the cellular and clinical level represent a promising experimental pharmacology field. The development of allosteric inhibitors, or specific agents directed against individual PCs is one of the challenges to be unraveled in the future.

Related Topics

    loading  Loading Related Articles