Combined Effects of Vascular Endothelial Growth Factor and Bone Morphogenetic Protein 2 on Odonto/Osteogenic Differentiation of Human Dental Pulp Stem CellsIn Vitro

    loading  Checking for direct PDF access through Ovid

Abstract

Introduction

The purpose of this study was to investigate whether combined and concerted delivery of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) enhances odonto/osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro.

Methods

Various concentrations of VEGF and/or BMP-2 with or without the presence of odonto/osteogenic medium (OM) were added into DPSC cultures for 21 days. The mineral formation in cultures was evaluated using alizarin red stain (ARS). Optimal concentrations of VEGF and BMP-2 were codelivered to DPSCs for total of 21 days with the following experimental groups: (1) group 1: OM only, (2) group 2: OM + VEGF, (3) group 3: OM + BMP-2, and (4) group 4: OM + VEGF + BMP-2 (subgroup 4a: VEGF present the first 7 days, 4b: BMP-2 present the last 14 days, and 4c, both present for 21 days). Cultures were then subjected to quantitative ARS analysis or harvested for quantitative polymerase chain reaction analysis for the expression of core-binding factor alpha 1 (CBFA1), alkaline phosphatase (ALP), and dentin matrix protein 1 (DMP-1).

Results

No mineral formation was detected by ARS when VEGF and/or BMP-2 were used without OM. OM + VEGF, but not OM + BMP-2, formed more mineralization than OM (P < .05). In the codelivery groups, the highest mineralization was observed in OM + VEGF and subgroup 4a compared with OM or the other groups (P < .05). Quantitative polymerase chain reaction analysis showed that CBFA1, ALP, and DMP-1 levels were higher in groups 2, 3, and 4a compared with 4b and 4c (P < .05). CBFA1 expressed higher in groups 2, 3, and 4a compared with OM (P < .05). For ALP expression, only subgroup 4a expressed higher than OM (P < .05). No difference was detected between groups 2 and 3 (P > .05) in the expression of the 3 genes.

Conclusions

VEGF addition in the early phase rather than a continuous presence of both VEGF and BMP-2 enhances odonto/osteogenic differentiation of DPSCs.

Related Topics

    loading  Loading Related Articles