Coinjection of IL2 DNA enhances E7-specific antitumor immunity elicited by intravaginal therapeutic HPV DNA vaccination with electroporation.

    loading  Checking for direct PDF access through Ovid

Abstract

The generation and use of therapeutic human papillomavirus (HPV) DNA vaccines represent an appealing treatment method against HPV-associated cervical cancer owing to their safety and durability. Previously, we created a therapeutic HPV DNA vaccine candidate by linking the HPV16-E7 DNA sequence to calreticulin (CRT/E7), which we showed could generate significant E7-specific cytotoxic T lymphocyte (CTL)-mediated antitumor immune responses against HPV16 oncogenes expressing murine tumor model TC-1. Here we assess the therapeutic efficacy of intravaginal immunization with pcDNA3-CRT/E7 followed by electroporation. In addition, we examined whether coadministration of DNA-encoding interleukin 2 (IL2) with the pcDNA3-CRT/E7 could improve the T-cell responses elicited by pcDNA3-CRT/E7. TC-1 tumor-bearing mice vaccinated intravaginally with both pcDNA3-CRT/E7 and IL2 DNA followed by electroporation induced stronger local antitumor CTL response in comparison to mice that received other treatment regimens. Additionally, we found that coadministration of IL2 DNA with pcDNA3-CRT/E7 modified the tumor microenvironment by decreasing the population of regulatory T cells and myeloid-derived suppressor cells relative to that of CTLs. Our data demonstrate the translational potential of local administration of IL2 and pcDNA3-CRT/E7 followed by electroporation in treating cervicovaginal tumors.

Related Topics

    loading  Loading Related Articles