Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators

    loading  Checking for direct PDF access through Ovid

Abstract

Crystal structures of the human GLP-1 receptor in complex with two negative allosteric modulators reveal a common binding pocket, and, together with mutagenesis and modelling studies, further our understanding of the receptor activation mechanism.Author: Please check the wording of the following statement, which will appear online only.

The glucagon-like peptide-1 receptor (GLP-1R) and the glucagon receptor (GCGR) are members of the secretin-like class B family of G-protein-coupled receptors (GPCRs) and have opposing physiological roles in insulin release and glucose homeostasis1. The treatment of type 2 diabetes requires positive modulation of GLP-1R to inhibit glucagon secretion and stimulate insulin secretion in a glucose-dependent manner2. Here we report crystal structures of the human GLP-1R transmembrane domain in complex with two different negative allosteric modulators, PF-06372222 and NNC0640, at 2.7 and 3.0 Å resolution, respectively. The structures reveal a common binding pocket for negative allosteric modulators, present in both GLP-1R and GCGR3 and located outside helices V-VII near the intracellular half of the receptor. The receptor is in an inactive conformation with compounds that restrict movement of the intracellular tip of helix VI, a movement that is generally associated with activation mechanisms in class A GPCRs4,5,6. Molecular modelling and mutagenesis studies indicate that agonist positive allosteric modulators target the same general region, but in a distinct sub-pocket at the interface between helices V and VI, which may facilitate the formation of an intracellular binding site that enhances G-protein coupling.

Related Topics

    loading  Loading Related Articles