3D CMRO2 mapping in human brain with direct 17O MRI: Comparison of conventional and proton-constrained reconstructions

    loading  Checking for direct PDF access through Ovid


Oxygen metabolism is altered in brain tumor regions and is quantified by the cerebral metabolic rate of oxygen consumption (CMRO2). Direct dynamic 17O MRI with inhalation of isotopically enriched 17O2 gas can be used to quantify CMRO2; however, pixel-wise CMRO2 quantification in human brain is challenging due to low natural abundance of 17O isotope and, thus, the low signal-to-noise ratio (SNR) of 17O MR images. To test the feasibility CMRO2 mapping at a clinical 3 T MRI system, a new iterative reconstruction was proposed, which uses the edge information contained in a co-registered 1H gradient image to construct a non-homogeneous anisotropic diffusion (AD) filter. AD-constrained reconstruction of 17O MR images was compared to conventional Kaiser-Bessel gridding without and with Hanning filtering, and to iterative reconstruction with a total variation (TV) constraint. For numerical brain phantom and in two in vivo data sets of one healthy volunteer, AD-constrained reconstruction provided 17O images with improved resolution of fine brain structures and resulted in higher SNR. CMRO2 values of 0.78 – 1.55 μmol/gtissue/min (white brain matter) and 1.03 – 2.01 μmol/gtissue/min (gray brain matter) as well as the CMRO2 maps are in a good agreement with the results of 15O-PET and 17O MRI at 7 T and at 9.4 T. In conclusion, the proposed AD-constrained reconstruction enabled calculation of 3D CMRO2 maps at 3 T MRI system, which is an essential step towards clinical translation of 17O MRI for non-invasive CMRO2 quantification in tumor patients.

Related Topics

    loading  Loading Related Articles