Exploring binding characteristics and the related competition of different protein-bound uremic toxins.

    loading  Checking for direct PDF access through Ovid


Little is known about potential differences in binding characteristics of protein-bound uremic toxins (PBUTs) in patients with chronic kidney disease (CKD) versus healthy controls. The question arises whether eventual differences are attributed to (i) the elevated levels of competing uremic toxins, and/or (ii) post-translational modifications of albumin. We evaluated the binding characteristics of hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS), and p-cresylsulfate (pCS) by deriving a binding curve in three distinct conditions: (i) serum from healthy controls (healthy serum), (ii) blank serum from hemodialysis patients (blank HD serum; i.e. cleared from uremic toxins), and (iii) non-treated serum from HD patients (HD serum). Additionally, the mutual binding competition of these uremic toxins was studied in blank HD in pairs. In both experiments, equilibrium dialysis (37 °C, 5 h) was used to separate the free and bound fractions of each PBUT. Free and total PBUT concentrations were quantified by an ultra-high performance liquid chromatography method with tandem mass spectrometer detection and the percentage protein binding (%PB) of each PBUT was calculated. For all four compounds, the binding capacity of healthy serum was higher than blank HD serum, which was comparable to non-treated HD serum, except for HA. The competition experiments revealed that at high uremic concentrations, mutual competition was observed for the strongly bound PBUTs IS and pCS. The %PB of the weakly bound HA and IAA was lower (trend) only for the addition to blank HD serum containing the strongly bound IS or pCS. There is an intrinsic impact on protein binding in uremia, revealing a lower binding capacity, as compared to healthy controls. Competitive binding is only relevant for the strongly bound PBUTs at high uremic concentrations. In addition, at least part of the effect on binding capacity can be attributed to post-translational modifications of albumin.

    loading  Loading Related Articles