CRISPR-engineered genome editing for the next generation neurological disease modeling

    loading  Checking for direct PDF access through Ovid

Abstract

Neurological disorders often occur because of failure of proper brain development and/or appropriate maintenance of neuronal circuits. In order to understand roles of causative factors (e.g. genes, cell types) in disease development, generation of solid animal models has been one of straight-forward approaches. Recent next generation sequencing studies on human patient-derived clinical samples have identified various types of recurrent mutations in individual neurological diseases. While these discoveries have prompted us to evaluate impact of mutated genes on these neurological diseases, a feasible but flexible genome editing tool had remained to be developed. An advance of genome editing technology using the clustered regularly interspaced short palindromic repeats (CRISPR) with the CRISPR-associated protein (Cas) offers us a tremendous potential to create a variety of mutations in the cell, leading to “next generation” disease models carrying disease-associated mutations. We will here review recent progress of CRISPR-based brain disease modeling studies and discuss future requirement to tackle current difficulties in usage of these technologies.

    loading  Loading Related Articles