Severe retinopathy of prematurity predicts delayed white matter maturation and poorer neurodevelopment

    loading  Checking for direct PDF access through Ovid

Abstract

Objective

To determine whether severe retinopathy of prematurity (ROP) is associated with (1) abnormal white matter maturation and (2) neurodevelopmental outcomes at 18 months’ corrected age (CA) compared with neonates without severe ROP.

Design

We conducted a prospective longitudinal cohort of extremely preterm neonates born 24–28 weeks’ gestational age recruited between 2006 and 2013 with brain MRIs obtained both early in life and at term-equivalent age. Severe ROP was defined as ROP treated with retinal laser photocoagulation. Using diffusion tensor imaging and tract-based spatial statistics (TBSS), white matter maturation was assessed by mean fractional anisotropy (FA) in seven predefined regions of interest. Neurodevelopmental outcomes were assessed with Bayley Scales of Infant and Toddler Development-III (Bayley-III) composite scores at 18 months’ CA. Subjects were compared using Fisher’s exact, Kruskal-Wallis and generalised estimating equations.

Setting

Families were recruited from the neonatal intensive care unit at BC Women’s Hospital.

Patients

Of 98 extremely preterm neonates (median: 26.0 weeks) assessed locally for ROP, 19 (19%) had severe ROP and 83 (85%) were assessed at 18 months’ CA.

Results

Severe ROP was associated with lower FA in the posterior white matter, and with decreased measures of brain maturation in the optic radiations, posterior limb of the internal capsule (PLIC) and external capsule on TBSS. Bayley-III cognitive and motor scores were lower in infants with severe ROP.

Conclusions

Severe ROP is associated with maturational delay in the optic radiations, PLIC, external capsule and posterior white matter, housing the primary visual and motor pathways, and is associated with poorer cognitive and motor outcomes at 18 months’ CA.

Related Topics

    loading  Loading Related Articles