A systematic review of the exercise effect on bone health: the importance of assessing mechanical loading in perimenopausal and postmenopausal women

    loading  Checking for direct PDF access through Ovid

Abstract

Objective:

The aims of this systematic review were to determine the general effects of exercise on areal bone mineral density (BMD) in perimenopausal and postmenopausal women, and to provide information on the most suitable bone-loading exercise regimens that may improve bone health in this population group.

Methods:

A computerized, systematic literature search was performed in the electronic databases PubMed, Web of Science, CINAHL, SPORTDiscus, and The Cochrane Library, from January 2005 to November 2015, to identify all randomized controlled trials related to exercise in perimenopausal and postmenopausal women. The initial search identified 915 studies, with a final yield of 10 studies. Only randomized controlled trials that examined the effects of exercise programs longer than 24 weeks in women aged 35 to 70 years were included. The 10 studies quantified at least BMD and described training variables adequately (training period, frequency, volume, intensity).

Results:

Ten studies with moderate quality evidence (6.4 ± 1.8 points, range 4-9) were included. Significant changes in lumbar and femoral neck BMD were found mainly with high-impact exercise and whole body vibration interventions.

Conclusions:

While training effects must be interpreted with caution because of the heterogeneity of the protocols and exercises performed, this systematic review confirmed the effectiveness of impact exercises combined with other forms of training (vibration or strength training) to preserve BMD in perimenopausal and postmenopausal women. Despite the results possibly not representing a general dose-response relationship, we highlight the importance of quantifying loading intensity and frequency by means of accelerometry as these parameters are determinants for bone adaptation.

Related Topics

    loading  Loading Related Articles