ADAMTS5 Deficiency in Calcified Aortic Valves Is Associated With Elevated Pro-Osteogenic Activity in Valvular Interstitial Cells

    loading  Checking for direct PDF access through Ovid

Abstract

Objective—

Extracellular matrix proteinases are implicated in the pathogenesis of calcific aortic valve disease. The ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) enzyme is secreted, matrix-associated metalloendopeptidase, capable of degrading extracellular matrix proteins, particularly matrilin 2. We sought to determine the role of the ADAMTS5/matrilin 2 axis in mediating the phenotype transition of valvular interstitial cells (VICs) associated with calcific aortic valve disease.

Approach and Results—

Levels of ADAMTS5, matrilin 2, and α-SMA (α-smooth muscle actin) were evaluated in calcified and normal human aortic valve tissues and VICs. Calcified aortic valves have reduced levels of ADAMTS5 and higher levels of matrilin 2 and α-SMA. Treatment of normal VICs with soluble matrilin 2 caused an increase in α-SMA level through Toll-like receptors 2 and 4, which was accompanied by upregulation of runt-related transcription factor 2 and alkaline phosphatase. In addition, ADAMTS5 knockdown in normal VICs enhanced the effect of matrilin 2. Matrilin 2 activated nuclear factor (NF) κB and NF of activated T cells complex 1 and induced the interaction of these 2 NFs. Inhibition of either NF-κB or NF of activated T cells complex 1 suppressed matrilin 2’s effect on VIC phenotype change. Knockdown of α-SMA reduced and overexpression of α-SMA enhanced the expression of pro-osteogenic factors and calcium deposit formation in human VICs.

Conclusions—

Matrilin 2 induces myofibroblastic transition and elevates pro-osteogenic activity in human VICs via activation of NF-κB and NF of activated T cells complex 1. Myofibroblastic transition in human VICs is an important mechanism of elevating the pro-osteogenic activity. Matrilin 2 accumulation associated with relative ADAMTS5 deficiency may contribute to the mechanism underlying calcific aortic valve disease progression.

Related Topics

    loading  Loading Related Articles