Using DR52c/Ni2+ mimotope tetramers to detect Ni2+ reactive CD4+ T cells in patients with joint replacement failure

    loading  Checking for direct PDF access through Ovid

Abstract

T cell mediated hypersensitivity to nickel (Ni2+) is one of the most common causes of allergic contact dermatitis. Ni2+ sensitization may also contribute to the failure of Ni2+ containing joint implants, and revision to non-Ni2+ containing hardware can be costly and debilitating. Previously, we identified Ni2+ mimotope peptides, which are reactive to a CD4+ T cell clone, ANi2.3 (Vα1, Vβ17), isolated from a Ni2+ hypersensitive patient with contact dermatitis. This T cell is restricted to the major histocompatibility complex class II (MHCII) molecule, Human Leukocyte Antigen (HLA)-DR52c (DRA, DRB3*0301). However, it is not known if Ni2+ induced T cell responses in sensitized joint replacement failure patients are similar to subjects with Ni2+ induced contact dermatitis. Here, we generated DR52c/Ni2+ mimotope tetramers, and used them to test if the same Ni2+ T cell activation mechanism could be generalized to Ni2+ sensitized patients with associated joint implant failure. We confirmed the specificity of these tetramers by staining of ANi2.3 T cell transfectomas. The DR52c/Ni2+ mimotope tetramer detected Ni2+ reactive CD4+ T cells in the peripheral blood mononuclear cells (PBMC) of patients identified as Ni2+ sensitized by patch testing and a positive Ni2+ LPT. When HLA-typed by a DR52 specific antibody, three out of four patients were DR52 positive. In one patient, Ni2+ stimulation induced the expansion of Vβ17 positive CD4+ T cells from 0.8% to 13.3%. We found that the percentage of DR52 positivity and Vβ17 usage in Ni2+ sensitized joint failure patients are similar to Ni sensitized skin allergy patients. Ni2+ independent mimotope tetramers may be a useful tool to identify the Ni2+ reactive CD4+ T cells.

Related Topics

    loading  Loading Related Articles