Anti-tumor effects of a ‘human & mouse cross-reactive’ anti-ADAM17 antibody in a pancreatic cancer modelin vivo

    loading  Checking for direct PDF access through Ovid

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumor amongst all human cancers due to late diagnosis and resistant to treatment with chemotherapy and radiation. Preclinical and clinical studies have revealed that ErbB family for example epidermal growth factor receptor (EGFR) is a validated molecular target for pancreatic cancer prevention and therapy. The ErbB signaling cascade is regulated by a member of the ADAM (a disintegrin and metalloprotease) family, namely ADAM17, by enzymatic cleavage of precursor ligands into soluble cytokines and growth factors. Mouse genetic studies have demonstrated that ADAM17 is required for PDAC development. In this study, we evaluated the anti-tumor effects of A9(B8) IgG – the first specific ‘human and mouse cross-reactive’ ADAM17 inhibitory antibody on pancreatic malignant transformation. We found that inhibition of ADAM17 with A9(B8) IgG efficiently suppressed the shedding of ADAM17 substrates both in vivo and in vitro. Furthermore, we demonstrated that administration of A9(B8) IgG significantly suppressed motility in human pancreatic cancer cells and also significantly delayed tumorigenesis in the Pdx1Cre;KrasG12D;Trp53fl/+PDAC mouse model. Inhibition of ADAM17 with A9(B8) IgG particularly affected the progression of pre-invasive pancreatic lesions to advanced PDAC in mice. Taken together, the preclinical data presented here will provide a starting point for clinical applications of ADAM17 targeted therapy.

Related Topics

    loading  Loading Related Articles