Association of White Matter Lesions, Cerebral Atrophy, Intracranial Extravascular Calcifications, and Ventricular-Communicating Hydrocephalus with Delirium Among Veterans

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives

The literature regarding the underlying neuropathogenesis of delirium on head computed tomography (CT) is limited. The aim of this research was to investigate, using case–control retrospective chart review, the association of white matter lesions (WML), cerebral atrophy, intracranial extravascular calcifications, and ventricular-communicating hydrocephalus in older adult military veterans with and without delirium hospitalized in a Veterans Affairs Medical Center.

Methods

Head CT scans were examined for WML, atrophy, and intracranial extravascular calcifications globally in the cortex, subcortex (frontal, temporal, parietal, occipital lobes), basal ganglia (globus pallidus, caudate, putamen), and internal capsule, in addition to the presence of ventricular-communicating hydrocephalus. WML were graded as not present, <1 cm, 1 to 2 cm, or >2 cm. Atrophy, cerebral atrophy, intracranial extravascular calcifications, and ventricular-communicating hydrocephalus were graded as present or not present.

Results

There was a significant association of WML in the temporal lobe periventricular cortical and subcortical brain and a significant association of atrophy in the parietal lobes and the cerebellum in hospitalized older adult military veterans with delirium compared with hospitalized older adult military veterans without delirium. There were no differences between the delirium and nondelirium groups for intracranial extravascular calcifications and ventricular-communicating hydrocephalus.

Conclusions

The results suggest that atrophy in the parietal lobes and the cerebellum of hospitalized older adult military veterans may be associated with an elevated risk of delirium when compared with age, race, and sex-matched control veterans. Continuing efforts are needed to clarify the role of atrophy during delirium in the veteran and nonveteran older adult population to reduce progressive frailty and decreased quality of life secondary to hospital and posthospital-discharge delirium.

Related Topics

    loading  Loading Related Articles