No prolongation of skin allograft survival by immunoproteasome inhibition in mice

    loading  Checking for direct PDF access through Ovid

Abstract

The immunoproteasome, a distinct class of proteasomes, which is inducible under inflammatory conditions and constitutively expressed in monocytes and lymphocytes, is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Moreover, inhibition of the immunoproteasome subunit LMP7 ameliorates clinical symptoms of autoimmune diseases in vivo and was shown to suppress the development of T helper cell (Th) 1 and Th17 cells and to promote regulatory T-cell (Treg) generation independently of its function in antigen processing. Since Th1 and Th17 cells are detrimental and Treg cells are critical for transplant acceptance, we investigated the influence of the LMP7-selective inhibitor ONX 0914 in a mixed lymphocyte reaction (MLR) in vitro as well as on allograft rejection in a MHC-disparate (C57BL/6 to BALB/c) and a multiple minor histocompatibility antigen (miHA)-disparate (B10.Br to C3H) model of skin transplantation in vivo. Although we observed reduced allo-specific IL-17 production of T cells in vitro, we found that selective inhibition of LMP7 had neither an influence on allograft survival in an MHC-mismatch model nor in a multiple minor mismatch skin transplantation model. We conclude that inhibition of the immunoproteasome is not effective in prolonging skin allograft survival in skin allotransplantation.

Related Topics

    loading  Loading Related Articles