The pharmacokinetic and pharmacodynamic properties of site-specific pegylated genetically modified recombinant human interleukin-11 in normal and thrombocytopenic monkeys

    loading  Checking for direct PDF access through Ovid

Abstract

In order to improve the pharmacokinetic and pharmacodynamic properties of recombinant human interleukin-11 mutein (mIL-11) and to reduce the frequency of administration, we examined the feasibility of chemical modification of mIL-11 by methoxy polyethylene glycol succinimidyl carbonate (mPEG-SC). PEG-mIL-11 was prepared by a pH controlled amine specific method. Bioactivity of the protein was determined in a IL-11-dependent in vitro bioassay, its pharmacodynamic and pharmacokinetic properties were investigated by using normal and thrombocytopenic monkey models. N-terminus sequencing and peptide mapping analysis revealed that Lys33 is the PEGylated position for PEG-mIL-11. Bioactivity of PEG-mIL-11 assessed by B9-11 cell proliferation assay was comparable to that of mIL-11. More than 79-fold increase in area-under-the curve (AUC) and 26-fold increase in maximum plasma concentration (Cmax) was observed in pharmacokinetic analysis. Single dose administration of the PEG-mIL-11 induced blood platelets number increase and the effect duration were comparable to that of 7 to 10 consecutive daily administration of mIL-11 to the normal and thrombocytopenic monkey models. PEG-mIL-11 is a promising therapeutic for thrombocytopenia.

Related Topics

    loading  Loading Related Articles