Effects of dietary energy and lysine levels on growth performance and carcass yields of Pekin ducks from hatch to 21 days of age

    loading  Checking for direct PDF access through Ovid

Abstract

A 2 × 6 factorial experiment, using 2 dietary apparent metabolizable energy (AME) levels (2,750 and 3,050 Kcal/kg) and 6 supplemental lysine (Lys) levels (0, 0.10, 0.20, 0.30, 0.40, and 0.50%), was conducted to study the effects of dietary energy and lysine levels on growth performance and carcass yields of Pekin ducks from hatch to 21 d of age. A total of 576 one-day-old male White Pekin ducks was randomly allotted to 12 dietary treatments, each containing 6 replicate pens with 8 birds per pen. At 21 d of age, body weight gain, feed intake, and feed/gain were measured, and then 2 ducks selected randomly from each pen were slaughtered to evaluate the yields of abdominal fat, breast meat, and leg meat. As a result, birds that were fed basal diets with no Lys supplementation showed growth depression, and significant positive effects of dietary Lys supplementation on body weight gain (P < 0.001), feed intake (P < 0.001), and feed/gain (P = 0.002) were observed as dietary Lys increased gradually among all the groups. In addition, increasing energy levels did not affect overall body weight gain (P > 0.05), but feed intake (P = 0.001) and feed/gain (P = 0.009) decreased significantly between the groups. Dietary Lys levels influenced the yields of breast (P < 0.001) and leg (P = 0.001) meat among all the groups, but dietary energy levels had a significant positive effect only on abdominal fat yield (P = 0.014). The interaction between dietary energy and Lys influenced body weight gain of ducks significantly (P = 0.004). According to the broken-line regression analysis, Lys requirements of Pekin ducks for weight gain at 2,750 and 3,050 Kcal of AME/kg were 0.94 and 0.98%, respectively. It suggested that Lys requirement was higher at 3,050 Kcal of AME/kg than at 2,750 Kcal of AME/kg. Dietary energy content determined feed intake of the ducks, and high-energy diets will require a higher amino acid concentration to compensate for a lower feed intake.

Related Topics

    loading  Loading Related Articles