Reversal learning in C58 mice: Modeling higher order repetitive behavior

    loading  Checking for direct PDF access through Ovid

Abstract

Restricted, repetitive behaviors are diagnostic for autism and prevalent in other neurodevelopmental disorders. These behaviors cluster as repetitive sensory-motor behaviors and behaviors reflecting resistance to change. The C58 mouse strain is a promising model for these behaviors as it emits high rates of aberrant repetitive sensory-motor behaviors. The purpose of the present study was to extend characterization of the C58 model to resistance to change. This was done by comparing C58 to C57BL/6 mice on a reversal learning task under either a 100% or 80%/20% probabilistic reinforcement schedule. In addition, the effect of environmental enrichment on performance of this task was assessed as this rearing condition markedly reduces repetitive sensory-motor behavior in C58 mice. Little difference was observed between C58 and control mice under a 100% schedule of reinforcement. The 80%/20% probabilistic schedule of reinforcement generated substantial strain differences, however. Importantly, no strain difference was observed in acquisition, but C58 mice were markedly impaired in their ability to reverse their pattern of responding from the previously high density reinforcement side. Environmental enrichment did not impact acquisition under the probabilistic reinforcement schedule, but enriched C58 mice performed significantly better than standard housed C58 mice in reversal learning. Thus, C58 mice exhibit behaviors that reflect both repetitive sensory motor behaviors as well as behavior that reflects resistance to change. Moreover, both clusters of repetitive behavior were attenuated by environmental enrichment. Such findings, along with the reported social deficits in C58 mice, increase the translational value of this mouse model to autism.

Related Topics

    loading  Loading Related Articles