Interspecies Organogenesis-Derived Tissues for Transplantation

    loading  Checking for direct PDF access through Ovid


Ever since Dr. Joseph Murray’s Excelsior lecture in 1995 when he predicted a fourth “inductive phase” of surgical development in which replacement organs could be regrown or regenerated in vivo, and the first derivation of human pluripotent stem cells in 1998 by Dr. James Thomson, scientists have been expanding our knowledge of organ development and testing the potential of human pluripotent stem cells to differentiate into various cell types in the hopes of generating cells and tissues for transplantation. Reporting in Nature earlier this year, Yamaguchi et al1 synergized these 2 ideas to bring us 1 step closer to growing new organs and solving the organ shortage crisis. Building on prior work, they demonstrated the viable production of mouse-rat chimeric pancreata using the technique of blastocyst complementation by injecting mouse PSCs into PDX1 mutant rat blastocysts showing that isolated islets from these mouse-rat chimeric pancreata were capable of reversing streptozotocin induced diabetes in mice syngeneic to the original mouse PSC line, remarkably without long-term immunosuppression. As the ultimate goal of regenerative medicine seeks to generate replacement organs and tissues from the patient’s own cells, this study has profound implications.
Dr. Nakauchi’s laboratory has contributed with extensive work in the area of blastocyst complementation to construct chimeric organs, previously focusing on generating chimeric pancreata and kidneys in mice,2,3 pancreata in pigs,4 and endoderm and pancreas using Mixl1 inducible cells in rodents.5 These studies definitively demonstrated the requirement for a cellular niche created by disabling host organ development for ultimately generating donor PSC-derived organs, and that the host blastocyst species, not the PSC source species, determines organ size.
The current study builds and extends the authors previous work and investigates whether “autologous” organs (ie, mouse PSC-derived islets) would be susceptible to immune attack in syngeneic murine hosts1 (Figure 1). To test this, they first produced apancreatic rats using TALEN-mediated genome editing to modify the PDX1 locus. Then they injected enhanced green fluorescent protein (EGFP)-labeled rat PSCs into these PDX1mu/mu rat blastocysts, and observed homogeneous expression of pancreatic EGFP in the offspring. The pancreas exhibited normal histological architecture, normal islet endocrine composition, and reasonable but not perfect glucose disposal in glucose tolerance tests. This experiment showed that rat pancreata could be regrown using blastocyst complementation and that the PDX1mu/mu rat provided a developmental niche. Then, to generate interspecies chimeras, they injected EGFP-labeled mouse PSCs into PDX1mu/mu rat blastocysts and observed homogeneous pancreatic EGFP expression, suggesting that mouse PSCs contributed to all functional lineages of the pancreas. Although the PSCs seemed to contribute both structurally and functionally to pancreatic regrowth, the authors found sluggish glucose removal, suggesting suboptimal insulin production or responsiveness. In contrast, in heterozygous PDX1+/mu blastocyst-derived chimeras, they observed very limited contribution of EGFP-labeled cells to islets, once again indicating the requirement for a developmental niche. In their final experiment, the authors sought to determine whether islets isolated from mouse PSC-PDX1mu/mu rat chimeric pancreata could restore normoglycemia to streptozotocin-diabetic syngeneic C57BL/6 mouse recipients. They found that this was possible with as few as 100 islets transplanted under the kidney capsule, but required low-dose transient immunosuppression administered to the diabetic mice.
The attractiveness of this strategy extends well beyond islets and the treatment of diabetes. Patients with diseases in need of transplantable cells, tissues, or organs could donate a somatic cell, from skin or blood for example, then using standard reprogramming methods that generate patient-specific induced PSCs (iPSCs) in vitro. Using the blastocyst complementation technique, normal iPSCs, or “genetically corrected” iPSCs, could be injected into xenogeneic host blastocysts, such as from sheep, pigs, or nonhuman primates and allowed to develop into human chimeric organs.
    loading  Loading Related Articles