A massive, dead disk galaxy in the early Universe

    loading  Checking for direct PDF access through Ovid

Abstract

When the Universe was just 3 billion years old, half of the most massive galaxies had already ceased star formation, and such a galaxy has now been observed using gravitational lensing, unexpectedly turning out to be a compact, fast-spinning disk galaxy rather than a proto-bulge galaxy.

At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation1,2,3,4. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions5,6, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies7. Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which—surprisingly—turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst8. The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo9. This result confirms previous indirect indications10,11,12,13 that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.

    loading  Loading Related Articles