RAG2 involves theIgκlocus demethylation during B cell development

    loading  Checking for direct PDF access through Ovid

Abstract

The genes encoding the immunoglobulin κ light chain are assembled during B cell development by V(D)J recombination. For efficient rearrangement, the Igκ locus must undergo a series of epigenetic changes. One such epigenetic mark is DNA methylation. The mechanism that the Igκ locus is selectively demethylated at the pre-B cell stage has not previously been characterized. Here, we employed bisulfite DNA-modification assays to analyze the methylation status of the Igκ locus in primary pre-B cells from RAG-deficient mice with pre-rearranged Igh knock-in allele. We observed that the Igκ locus was hypermethylated in RAG2-deficient pre-B cells but hypomethylated in RAG1-deficient pre-B cells, indicating that wild-type (WT) RAG2 involves the Igκ locus demethylation in a RAG1-independent manner prior to rearrangement. We generated a series of RAG2 mutants between residue 350 and 383. We showed that these mutants mediated the Igκ rearrangement but failed to regulate the Igκ gene demethylation. We further analyzed that these mutants could increase RAG recombinase activity in vivo. We conclude that residues 350–383 region are responsible for endogenous Igκ locus demethylation at pre-B cells. We propose that WT RAG2 has an intrinsic function to regulate the Igκ locus demethylation.

Related Topics

    loading  Loading Related Articles