Detecting Abnormal Word Utterances in Children With Autism Spectrum Disorders: Machine-Learning-Based Voice Analysis Versus Speech Therapists

    loading  Checking for direct PDF access through Ovid

Abstract

Abnormal prosody is often evident in the voice intonations of individuals with autism spectrum disorders. We compared a machine-learning-based voice analysis with human hearing judgments made by 10 speech therapists for classifying children with autism spectrum disorders (n = 30) and typical development (n = 51). Using stimuli limited to single-word utterances, machine-learning-based voice analysis was superior to speech therapist judgments. There was a significantly higher true-positive than false-negative rate for machine-learning-based voice analysis but not for speech therapists. Results are discussed in terms of some artificiality of clinician judgments based on single-word utterances, and the objectivity machine-learning-based voice analysis adds to judging abnormal prosody.

Related Topics

    loading  Loading Related Articles