Oxidative lipidomics: applications in critical care

    loading  Checking for direct PDF access through Ovid


Purpose of review

Lipid peroxidation has long been established as a key player in the pathophysiology of critical illness. Recent developments in oxidative lipidomics have aided in deciphering the molecular mechanisms of lipid oxidation in health and disease. This review discusses recent achievements and recent developments in oxidative lipidomics and its contribution to the understanding of critical illness.

Recent findings

Most studies involving acute injury focus on identifying the end products of lipid peroxidation. This misses the early events and targets of peroxidation mechanisms. Recent developments in liquid chromatography tandem mass spectrometry-based oxidative lipidomics have enabled the identification of a wide variety of enzymatically generated lipid oxidation products. Such lipid mediators have been found to play an important role in injury, inflammation, and recovery in disease states such as sepsis or head trauma.


Multiple lipid oxidation products are formed either through enzymatic pathways or through random chemical reactions. These products are often biologically active and can contribute to the regulation of cellular signaling. Oxidative lipidomics has contributed to the identification and quantification of lipid peroxidation products, the mechanism and time course of their production after injury, and synergistic functioning with other regulatory processes in the body. These advances in knowledge will help guide the future development of interventions in critical illness.

Related Topics

    loading  Loading Related Articles