The Effect of PCSK9 Loss-of-Function Variants on the Postprandial Lipid and ApoB-Lipoprotein Response

    loading  Checking for direct PDF access through Ovid



Proprotein convertase subtilisin kexin 9 (PCSK9) mediates degradation of the low-density lipoprotein receptor (LDLR), thereby increasing plasma low-density lipoprotein cholesterol (LDL-C). Variations in the PCSK9 gene associated with loss of function (LOF) of PCSK9 result in greater expression of hepatic LDLR, lower concentrations of LDL-C, and protection from cardiovascular disease (CVD). Apolipoprotein-B (apoB) remnants also contribute to CVD risk and are similarly cleared by the LDLR. We hypothesized that PCSK9-LOF carriers would have lower fasting and postprandial remnant lipoproteins on top of lower LDL-C.


To compare fasting and postprandial concentrations of triglycerides (TGs), total apoB, and apoB48 as indicators of remnant lipoprotein metabolism in PCSK9-LOF carriers with those with no PCSK9 variants.


Case-control, metabolic study.


Clinical Research Center of The Ottawa Hospital.


Persons with one or more copies of the L10ins/A53V and/or I474V and/or R46L PCSK9 variant and persons with no PCSK9 variants.


Oral fat tolerance test.

Main Outcomes Measures:

Fasting and postprandial plasma TG, apoB48, total apoB, total cholesterol, and PCSK9 were measured at 0, 2, 4, and 6 hours after an oral fat load.


Participants with PCSK9-LOF variants (n = 22) had reduced fasting LDL-C (-14%) as well as lower fasting TG (-21%) compared with noncarrier controls (n = 23). LOF variants also had reduced postprandial total apoB (-17%), apoB48 (-23%), and TG (-18%). Postprandial PCSK9 declined in both groups (-24% vs -16%, respectively).


Participants carrying PCSK9-LOF variants had attenuated levels of fasting and postprandial TG, apoB48, and total apoB. This may confer protection from CVD and further validate the use of PCSK9 inhibitors to lower CVD risk.

Related Topics

    loading  Loading Related Articles