Identification and functional evaluation of two STAT3 variants in grass carp: Implication for the existence of specific alternative splicing of STAT3 gene in teleost

    loading  Checking for direct PDF access through Ovid

Abstract

A STAT family member, STAT3, becomes activated as a DNA binding protein in response to cytokines and growth factors. In teleost, STAT3 cDNA has been cloned and identified in a few species, but only a single STAT3 transcript is revealed in these studies. In the present study, two variants of STAT3 gene generated by alternative splicing were isolated from grass carp and nominated as STAT3α1 and STAT3α2 based on the homology with their mammalian orthologs. In particular, the homologs of STAT3α1/2 were also found in various fish species, including zebrafish, takifugu, tilapia, medaka and goldfish. Intriguingly, sequence alignment and genomic structure analysis revealed that fish STAT3α1/2 are generated through similar alternative splicing events, implying the potential physiological significance of generating STAT3 variants in fish. Grass carp STAT3α1/2 (gcSTAT3α1/2) were ubiquitously expressed although the transcript levels of STAT3α2 were markedly higher than STAT3α1 in all examined tissues. In vivo and in vitro studies showed that the expression patterns of these two variants were similar under the stimulation of immune stimuli. To reveal the role of gcSTAT3α1/2 in fish immunity, their phosphorylation and involvement in IL-17A/F1 mRNA expression were demonstrated in grass carp peripheral blood lymphocytes upon LPS or PHA challenge, providing evidence for the functional conservation of STAT3 signaling in fish. These findings also raise a question of whether both gcSTAT3α1/2 participate in transcriptional regulation in fish. Actually, our results showed that both of them had the ability to translocate into the nucleus upon activation, and to amplify IL-10 signaling, indicating the existence of STAT3 isoforms with functional redundancy in teleost.

Related Topics

    loading  Loading Related Articles