Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes

    loading  Checking for direct PDF access through Ovid

Abstract

The loggerhead turtle (Caretta caretta) can be considered a good indicator species for studying the ecological impact of endocrine disrupting chemicals (EDCs) on wildlife. However, the effect of these environmental pollutants on nuclear steroid hormone signaling has not yet been addressed in sea turtles mainly due to the legal constraints of their endangered status. Here we describe the use of primary erythrocyte cell cultures as in vitro models for evaluating the effects of different EDCs on the expression of estrogen receptor α (ERα). In addition, we evaluated erythrocyte toxicity caused by EDCs using Alamar Blue assay and heat shock proteins 60 (HSP60) expression. Primary cultures of erythrocytes were exposed to increasing concentrations of 4-nonylphenol (4NP), Diisodecyl phthalate (DiDP), Tri-m-cresyl phosphate (TMCP) and Tributyltin (TBT) for 48 h. Alamar Blue demonstrated that exposure of erythrocytes to each contaminant for up to 48 h led to a significant impairment of cellular metabolic activity at 100 μM, with the exception of TBT. Moreover, our data indicate that loggerhead erythrocytes constitutively express ERα and HSP60 at the transcript level and respond to EDCs by up-regulating their expression. In this regard, ERα was up-regulated in a dose-dependent manner after 48 h exposure to both 4NP and TMCP. Interestingly, the dosage-dependent effects of DiDP on ERα expression were opposite in comparison to that obtained following exposure to the other tested compounds. This work provides the first indication regarding the potential of primary erythrocytes as study models for evaluating the effects of EDCs on sea turtles.

Related Topics

    loading  Loading Related Articles