Differences in Spatiotemporal Parameters Between Trained Runners and Untrained Participants

    loading  Checking for direct PDF access through Ovid

Abstract

Gómez-Molina, J, Ogueta-Alday, A, Stickley, C, Tobalina, JC, Cabrejas-Ugartondo, J, and García-López, J. Differences in spatiotemporal parameters between trained runners and untrained participants. J Strength Cond Res 31(8): 2169–2175, 2017—The aim of this study was to compare the spatiotemporal parameters of trained runners and untrained participants with the same foot strike pattern (rearfoot) during running at controlled speeds. Twenty-one participants were classified in 2 groups according to their training experience: Trained (n = 10, amateur runners with long distance training experience) and Untrained (n = 11, healthy untrained participants). Anthropometric variables were recorded, and the participants performed both a submaximal (between 9 and 15 km·h−1) and a graded exercise running test (from 6 km·h−1 until exhaustion) on a treadmill. Physiological (V[Combining Dot Above]O2max, heart rate, running economy [RE], peak speed …) and biomechanical variables (contact and flight times, step rate, and length) were simultaneously registered. Trained runners showed higher step rate and shorter step length than the Untrained group at the same running speeds (between 4 and 7%, p ≤ 0.05) and at the same physiological intensities (between 7 and 11%, p ≤ 0.05). However, there were no differences in contact and flight times between groups. Significant differences (p ≤ 0.05) and large effect sizes (Cohen's d) between groups were found for body mass, sum of 6 skinfolds, V[Combining Dot Above]O2max, peak speed, and ventilatory threshold and respiratory compensation threshold speeds. The Trained group also showed a ∼7% better RE (ml·kg−0.75·km−1) than the Untrained group. In conclusion, adopting higher step rate and shorter step length may be an adaptive mechanism of the Trained group to reduce injury risk and possibly improve RE. However, contact and flight times were consistent regardless of training level.

    loading  Loading Related Articles