Reducing Circumduction and Hip Hiking During Hemiparetic Walking Through Targeted Assistance of the Paretic Limb Using a Soft Robotic Exosuit

    loading  Checking for direct PDF access through Ovid

Abstract

Objective

The aim of the study was to evaluate the effects on common poststroke gait compensations of a soft wearable robot (exosuit) designed to assist the paretic limb during hemiparetic walking.

Design

A single-session study of eight individuals in the chronic phase of stroke recovery was conducted. Two testing conditions were compared: walking with the exosuit powered versus walking with the exosuit unpowered. Each condition was 8 minutes in duration.

Results

Compared with walking with the exosuit unpowered, walking with the exosuit powered resulted in reductions in hip hiking (27 [6%], P = 0.004) and circumduction (20 [5%], P = 0.004). A relationship between changes in knee flexion and changes in hip hiking was observed (Pearson r = −0.913, P < 0.001). Similarly, multivariate regression revealed that changes in knee flexion (β = −0.912, P = 0.007), but not ankle dorsiflexion (β = −0.194, P = 0.341), independently predicted changes in hip hiking (R2= 0.87, F(2, 4) = 13.48, P = 0.017).

Conclusions

Exosuit assistance of the paretic limb during walking produces immediate changes in the kinematic strategy used to advance the paretic limb. Future work is necessary to determine how exosuit-induced reductions in paretic hip hiking and circumduction during gait training could be leveraged to facilitate more normal walking behavior during unassisted walking.

Related Topics

    loading  Loading Related Articles