The Longevity of Statistical Learning: When Infant Memory Decays, Isolated Words Come to the Rescue

    loading  Checking for direct PDF access through Ovid

Abstract

Research over the past 2 decades has demonstrated that infants are equipped with remarkable computational abilities that allow them to find words in continuous speech. Infants can encode information about the transitional probability (TP) between syllables to segment words from artificial and natural languages. As previous research has tested infants immediately after familiarization, infants’ ability to retain sequential statistics beyond the immediate familiarization context remains unknown. Here, we examine infants’ memory for statistically defined words 10 min after familiarization with an Italian corpus. Eight-month-old English-learning infants were familiarized with Italian sentences that contained 4 embedded target words—2 words had high internal TP (HTP, TP = 1.0) and 2 had low TP (LTP, TP = .33)—and were tested on their ability to discriminate HTP from LTP words using the Headturn Preference Procedure. When tested after a 10-min delay, infants failed to discriminate HTP from LTP words, suggesting that memory for statistical information likely decays over even short delays (Experiment 1). Experiments 2–4 were designed to test whether experience with isolated words selectively reinforces memory for statistically defined (i.e., HTP) words. When 8-month-olds were given additional experience with isolated tokens of both HTP and LTP words immediately after familiarization, they looked significantly longer on HTP than LTP test trials 10 min later. Although initial representations of statistically defined words may be fragile, our results suggest that experience with isolated words may reinforce the output of statistical learning by helping infants create more robust memories for words with strong versus weak co-occurrence statistics.

Related Topics

    loading  Loading Related Articles