Decontamination of Hospital Surfaces With Multijet Cold Plasma: A Method to Enhance Infection Prevention and Control?

    loading  Checking for direct PDF access through Ovid


OBJECTIVE To evaluate the efficacy of a multijet cold-plasma system and its efficacy in decontaminating 2 surfaces commonly found in hospitals DESIGN An in vitro study of common causes of healthcare-acquired infection METHODS Log10 9 cultures of methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended spectrum β-lactamase-producing Escherichia coli, and Acinetobacter baumannii were applied to 5-cm2 sections of stainless steel and mattress. Human serum albumin (HSA) was used as a proxy marker for organic material, and atomic force microscopy (AFM) was used to study the impact on bacterial cell structure. The inoculated surfaces were exposed to a cold-air-plasma-generating multijet prototype for 15, 20, 30, and 45 seconds. RESULTS After 45 seconds, at least 3 to 4 log reductions were achieved for all bacteria on the mattress, while 3 to 6 log reductions were observed on stainless steel. The presence of HSA had no appreciable effect on bacterial eradication. The surfaces with bacteria exposed to AFM showed significant morphological changes indicative of "etching" due to the action of highly charged ions produced by the plasma. CONCLUSION This multijet cold-plasma prototype has the potential to augment current environmental decontamination approaches but needs further evaluation in a clinical setting to confirm its effectiveness. Infect Control Hosp Epidemiol 2017;1-6.

Related Topics

    loading  Loading Related Articles