Cortical networks for reference-frame processing are shared by language and spatial navigation systems

    loading  Checking for direct PDF access through Ovid

Abstract

To help us live in the three-dimensional world, our brain integrates incoming spatial information into reference frames, which are based either on our own body (egocentric) or independent from it (allocentric). Such frames, however, may be crucial not only when interacting with the visual world, but also in language comprehension, since even the simplest utterance can be understood from different perspectives. While significant progress has been made in elucidating how linguistic factors, such as pronouns, influence reference frame adoption, the neural underpinnings of this ability are largely unknown. Building on the neural reuse framework, this study tested the hypothesis that reference frame processing in language comprehension involves mechanisms used in navigation and spatial cognition. We recorded EEG activity in 28 healthy volunteers to identify spatiotemporal dynamics in (1) spatial navigation, and (2) a language comprehension task (sentence-picture matching). By decomposing the EEG signal into a set of maximally independent activity patterns, we localised and identified a subset of components which best characterised perspective-taking in both domains. Remarkably, we find individual co-variability across these tasks: people's strategies in spatial navigation are also reflected in their construction of sentential perspective. Furthermore, a distributed network of cortical generators of such strategy-dependent activity responded not only in navigation, but in sentence comprehension. Thus we report, for the first time, evidence for shared brain mechanisms across these two domains - advancing our understanding of language's interaction with other cognitive systems, and the individual differences shaping comprehension.

Related Topics

    loading  Loading Related Articles