In vivoefficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing

    loading  Checking for direct PDF access through Ovid

Abstract

Exploring the importance of nanofibrous scaffold with traditionally important medicine as a wound dressing material prevents infection and aids in faster healing of wounds. In the present study, the Collagen (COL) from the marine fish skin was extracted and employed for coating the Poly(3-hydroxybutyric acid) (P)–Gelatin (G) nanofibrous scaffold with a bioactive Coccinia grandis extract (CPE) fabricated through electrospinning. Further, the fabricated collagen coated nanofibrous scaffold (PG-CPE-COL) applied to the experimental wound of rats and the wound healing was analyzed with by physiochemical and biological techniques. The increased level of hydroxyproline, hexosamine and uronic acid was observed in PG-CPE-COL treated than the other groups. The CPE and collagen in the nanofibrous scaffold accelerates the wound healing and thereby reduced the inflammation caused by the cyclooxygenase-2 (COX-2) and inducible nitric oxide synthases (iNOS) in wound healing. The nanofibrous scaffold has influenced the expression of various growth factors such as vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and transforming growth factor (TGF-β). In addition, the PG-CPE-COL nanofibrous scaffold increases the deposition of collagen synthesis and accelerates reepithelialization. Thus, the results suggest that the collagen coated nanofibrous scaffold with bioactive traditional medicine enhanced the faster healing of wound.

Related Topics

    loading  Loading Related Articles