Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma

    loading  Checking for direct PDF access through Ovid

Abstract

Tumor-associated macrophages (TAMs) polarization represents a key regulatory process of tumor progression. However, the underlying mechanisms are unclear. This study aimed to investigate the relationship between secreted phosphoprotein 1 (SPP1) and TAMs in lung adenocarcinoma cells. THP-1 monocytes were differentiated into macrophages using PMA. PMA-treated THP-1 cells were co-cultured with human A549 cells culture supernatant. SPP1 expression in TAMs isolated from lung adenocarcinoma tissues and PMA-treated THP-1 cells were measured. Macrophage polarization was identified by flow cytometric analysis. Cell migration and apoptosis were assessed by Transwell migration assays and flow cytometric analysis, respectively. SPP1 is highly expressed in tumor tissues and TAMs isolated from patients with an advanced TNM stage, and also in PMA-treated THP-1 cells. Co-culture with A549 cells strongly induced SPP-1 expression as well as M2 polarization of THP-1 cells, but it had little effect on short hairpin SPP1 (shSPP1)-transfected THP-1 cells. Interestingly, programmed death ligand 1 (PD-L1), a critical regulator of M2 polarization, was downregulated in SPP1 knockdown THP-1 cells. Inhibition of PD-L1 induced a greater decline of the M2 markers IL-10 and Arg-1 but an increase in the M1 markers IL-12 and TNF-α. In addition, SPP1 knockdown in THP-1 cells can mitigate migration but promote apoptosis of A549 cells, and PD-L1 inhibition can further enhance this effect. THP-1 cells co-cultured with A549 cells attenuated CD4+ T-cell activation, whereas SPP1 inhibition restored T-cell activation. These results highlight the importance of SPP1 in mediating macrophage polarization and lung cancer evasion, suggesting a potential therapeutic target for lung cancer.

Related Topics

    loading  Loading Related Articles