Esculentoside A exerts anti-inflammatory activity in microglial cells

    loading  Checking for direct PDF access through Ovid

Abstract

Esculentoside A (EsA) is a saponin isolated from the roots of Phytolacca esculenta. This study was designed to evaluate the pharmacological effects of EsA on lipopolysaccharide (LPS)-stimulated BV2 microglia and primary microglia cells. Our results indicated that EsA pretreatment significantly decreased LPS-induced production of Nitric Oxide (NO) and Prostaglandin E2 (PGE2) and impeded LPS-mediated upregulation of pro-inflammatory mediators’ expression such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-12 (IL-12) and tumor necrosis factor-a (TNF-α) in both BV2 microglia and primary microglia cells. Moreover, EsA markedly suppressed nuclear factor-κB p65 (NF-κB p65) translocation by blocking IκB-α phosphorylation and degradation in LPS-treated BV2 cells. EsA also decreased phosphorylation level of mitogen-activated protein kinases (MAPKs) and inhibited NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome mediated caspase-1 activation in LPS-stimulated BV2 cells. Additionally, EsA decreased β-amyloid1–42 (Aβ1–42)-induced production of TNF-α, IL-1β and IL-6 in primary microglia. Thus, EsA might be a promising therapeutic agent for alleviating neuroinflammatory diseases.

Related Topics

    loading  Loading Related Articles