Immunogenicity of a fusion protein containing PilQ and disulphide turn region of PilA from Pseudomonas aeruginosa in mice

    loading  Checking for direct PDF access through Ovid

Abstract

Interference with bacterial adhesion is a new means to prevent or treat bacterial infections. In this experimental study we evaluated the immunogenic properties of a chimeric protein composed of PilQ and disulphide turn region of PilA from Pseudomonas aeruginosa in mice as an anti-adhesion based vaccine. First of all, a chimeric bivalent protein composed of PilQ and PilA was constructed and following subcutaneous immunization with merely the purified protein or in its admixed form with alum, the immunogenicity of the chimeric antigen was assessed in BALB/c mice. Then, the characteristics of the developed antibodies were studied by ELISA. Furthermore, the immunoreactivity of the purified recombinant protein was confirmed by immunoblotting. Alum as a common adjuvant boosted immunogenicity of the construct, resulting significantly greater anti-pili IgG titre. Mice antibody response consisted of IgG1, IgG2a, IgG2b and IgG3 subtypes with predominance of IgG1 subclass. The developed antibodies were capable to inhibit motility of PAO1 strain. In conclusion, our primary results revealed that the designed recombinant protein is a protective construct and may be used as a potential candidate for prophylactic purposes against P. aeruginosa infection.

Significance and Impact of the Study

In this study we examined the potential of integrated PilQ/PilA (QA) antigen as a vaccine candidate against Pseudomonas aeruginosa. Nowadays, anti-adhesion based vaccines are considered as new means to prevent or treat bacterial infections. Our study revealed that chimeric protein PilQ and disulphide turn region of PilA triggers production of specific antibodies. This humoral immune responses augmented when QA was administered in combination with an adjuvant. The results demonstrated efficacy of the designed recombinant chimeric antigen as an effective candidate in prevention of P. aeruginosa infection.

Related Topics

    loading  Loading Related Articles