Applying Decision Science to the Prioritization of Healthcare-Associated Infection Initiatives

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives

Improving patient quality remains a top priority from the perspectives of both patient outcomes and cost of care. The continuing threat to patient safety has resulted in an increasing number of options for patient safety initiatives, making choices more difficult because of competing priorities. This study provides a proof of concept for using low-cost decision science methods for prioritizing initiatives.

Methods

Using multicriteria decision analysis, we developed a decision support model for aiding the prioritization of the four most common types of healthcare-associated infections: surgical site infections, central line–associated bloodstream infections, ventilator-associated events, and catheter-associated urinary tract infections. In semistructured interviews, we elicited structure and parameter values of a candidate model, which was then validated by six participants with different roles across three urban teaching and nonteaching hospitals in the Baltimore, Maryland area.

Results

Participants articulated the following structural attributes of concern: patient harm, monetary costs, patient mortality, reputational effects, and patient satisfaction. A quantitative decision-making model with an associated uncertainty report for prioritizing initiatives related to the four most common types of healthcare-associated infections was then created.

Conclusions

A decision support methodology such as our proof of concept could aid hospital executives in prioritizing the quality improvement initiatives within their hospital, with more complete data. Because hospitals continue to struggle in improving quality of care with tighter budgets, a formal decision support mechanism could be used to objectively prioritize patient safety and quality initiatives.

Related Topics

    loading  Loading Related Articles