Light-induced regulation of ligand-gated channel activity.

    loading  Checking for direct PDF access through Ovid

Abstract

The control of ligand-gated receptors with light using photochromic compounds has evolved from the first handcrafted examples to accurate, engineered receptors, whose development is supported by rational design, high-resolution protein structures, comparative pharmacology and molecular biology manipulations. Photoswitchable regulators have been designed and characterized for a large number of ligand-gated receptors in the mammalian nervous system, including nicotinic acetylcholine, glutamate and GABA receptors. They provide a well-equipped toolbox to investigate synaptic and neuronal circuits in all-optical experiments. This focused review discusses the design and properties of these photoswitches, their applications and shortcomings and future perspectives in the field.

    loading  Loading Related Articles