A signalome screening approach in the autoinflammatory disease TNF receptor associated periodic syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing

    loading  Checking for direct PDF access through Ovid

Abstract

TNF receptor associated periodic syndrome (TRAPS) is an autoinflammatory disease caused by mutations in TNF Receptor 1 (TNFR1). Current therapies for TRAPS are limited and do not target the pro-inflammatory signalling pathways that are central to the disease mechanism. Our aim was to identify drugs for repurposing as anti-inflammatories based on their ability to down-regulate molecules associated with inflammatory signalling pathways that are activated in TRAPS. This was achieved using rigorously optimized, high through-put cell culture and reverse phase protein microarray systems to screen compounds for their effects on the TRAPS-associated inflammatory signalome. 1360 approved, publically available, pharmacologically active substances were investigated for their effects on 40 signalling molecules associated with pro-inflammatory signalling pathways that are constitutively upregulated in TRAPS. The drugs were screened at four 10-fold concentrations on cell lines expressing both wild-type (WT) TNFR1 and TRAPS-associated C33Y mutant TNFR1, or WT TNFR1 alone; signalling molecule levels were then determined in cell lysates by the reverse-phase protein microarray. A novel mathematical methodology was developed to rank the compounds for their ability to reduce the expression of signalling molecules in the C33Y-TNFR1 transfectants towards the level seen in the WT-TNFR1 transfectants. Seven high-ranking drugs were selected and tested by RPPA for effects on the same 40 signalling molecules in lysates of peripheral blood mononuclear cells (PBMCs) from C33Y-TRAPS patients compared to PBMCs from normal controls. The fluoroquinolone antibiotic lomefloxacin, as well as others from this class of compounds, showed the most significant effects on multiple pro-inflammatory signalling pathways that are constitutively activated in TRAPS; lomefloxacin dose-dependently significantly reduced expression of 7/40 signalling molecules across the Jak/Stat, MAPK, NF-κB and PI3K/AKT pathways. This study demonstrates the power of signalome screening for identifying candidates for drug repurposing.

Related Topics

    loading  Loading Related Articles