Eradication of HT-29 colorectal adenocarcinoma cells by controlled photorelease of CO from a CO-releasing polymer (photoCORP-1) triggered by visible light through an optical fiber-based device

    loading  Checking for direct PDF access through Ovid


The gaseous signaling molecule carbon monoxide (CO) has recently been recognized for its wide range of physiological activity as well as its antineoplastic properties. However, site-specific delivery of this noxious gas presents a major challenge in hospital settings. In this work, a visible light-sensitive CO-releasing molecule (photoCORM) derived from manganese(I) and 2-(quinolyl)benzothiazole (qbt) namely, [Mn(CO)3(qbt)(4-vpy)](CF3SO3) (1), has been co-polymerized within a gas-permeable HEMA/EGDMA hydrogel. The resulting photoactive CO-releasing polymer (photoCORP-1) incorporates 1 such that neither the carbonyl complex nor its photoproduct(s) exits the polymer at any time. The material can be triggered to photorelease CO remotely by low-power broadband visible light (<1 mW cm−2) with the aid of fiber optics technology. The CO photorelease rates of photoCORP-1 (determined by spectrophotometry) can be modulated by both the concentration of 1 in the hydrogel and the intensity of the light. A CO-delivery device has been assembled to deliver CO to a suspension of human colorectal adenocarcinoma cells (HT-29) under the control of visible light and the extent of CO-induced apoptotic death of the cancer cells has been determined via Annexin V/Propidium iodide stain and flow cytometry. This photoactive CO-releasing polymer could find use in delivering controlled doses of CO to cellular targets such as malignant tissues in remote parts of the body.

Related Topics

    loading  Loading Related Articles