MHC class II alpha, beta and MHC class II-associated invariant chains from Chinese sturgeon (Acipenser sinensis) and their response to immune stimulation

    loading  Checking for direct PDF access through Ovid

Abstract

The major histocompatibility complex class II (MHC II) molecules play a vital role in adaptive immune response through presenting antigenic peptides to CD4+ T lymphocytes. To accomplish this physiologic function, the MHC class II-associated invariant chain interacts with the MHC II α/β subunits and promotes their correct assembly and efficient traffic. Here, we isolated the cDNAs of MHC II α, β and MHC II-associated invariant chains (designated as CsMHC II α, CsMHC II β, and CsMHC II γ) from Chinese sturgeon (Acipenser sinensis). The CsMHC II α, β, and γ mRNAs were widely expressed in Chinese sturgeon, and the highest expression was found in spleen for CsMHC II α and β chains, while in head kidney for CsMHC II γ chain. Stimulation to Chinese sturgeon with inactivated trivalent bacterial vaccine or polyinosinic polycytidylic acid (poly(I:C)) up-regulated the expressions of CsMHC II α, and β mRNAs, and their transcripts were overall more quickly up-regulated by poly(I:C) than by bacterial vaccine. Poly(I:C) induced higher CsMHC II γ expression than bacterial vaccine in intestine and spleen, while lower than bacterial vaccine in head kidney and liver. When co-expressed in mouse dendritic cells, the CsMHC II γ chain bound to both the MHC II α and β chains. Furthermore, the over-expressed CsMHC II γ chain, not CsMHC II α or CsMHC II β chain, activated NF-κB and STAT3 in mouse dendritic cells, and induced TNF-α and IL-6 expressions as well. This activity was nearly abolished by mutation of the Ser29/Ser34 to Ala29/Ala34 in CsMHC II γ. These results suggested that CsMHC II α, β, and γ chains might play important role in immune response to pathogen microbial infection of Chinese sturgeon possibly via a conserved functional mechanism throughout vertebrate evolution, which might contribute to our understanding the immune biology of sturgeons.

Related Topics

    loading  Loading Related Articles