Neurotensin in the posterior thalamic paraventricular nucleus: inhibitor of pharmacologically relevant ethanol drinking

    loading  Checking for direct PDF access through Ovid


Individuals prone to ethanol overconsumption may have preexisting neurochemical disturbances that contribute to their vulnerability. This study examined the paraventricular nucleus of the thalamus (PVT), a limbic structure recently shown to participate in ethanol intake. To identify individuals prone to ethanol overconsumption, we tested Long–Evans rats in behavioral paradigms and found high levels of vertical time (rearing behavior) in a novel activity chamber to be a consistent predictor of subsequent excessive 20 percent ethanol drinking under the intermittent access model. Examining neurochemicals in the PVT, we found before ethanol exposure that prone rats with high rearing, compared with non-prone rats, had significantly lower levels of neurotensin (NTS) mRNA and peptide in the posterior (pPVT) but not anterior (aPVT) subregion of the PVT. Our additional finding that ethanol intake has no significant impact on either rearing or NTS levels indicates that these measures, which are different in prone rats before ethanol consumption, remain stable after ethanol consumption. The possibility that NTS directly controls ethanol drinking is supported by our finding that NTS administration specifically suppresses ethanol drinking when injected into the pPVT but not aPVT, with this effect occurring exclusively in higher drinkers that presumably have lower endogenous levels of NTS. Further, an NTS antagonist in the pPVT augments intake in lower drinkers with presumably more endogenous NTS, while NTS in the pPVT inhibits novelty-induced rearing that predicts excessive drinking. Together, these results provide strong evidence that low endogenous levels of NTS in the pPVT contribute to an increased propensity toward excessive ethanol drinking.

Related Topics

    loading  Loading Related Articles