Machine-learning Support to Individual Diagnosis of Mild Cognitive Impairment Using Multimodal MRI and Cognitive Assessments

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

Understanding whether the cognitive profile of a patient indicates mild cognitive impairment (MCI) or performance levels within normality is often a clinical challenge. The use of resting-state functional magnetic resonance imaging (RS-fMRI) and machine learning may represent valid aids in clinical settings for the identification of MCI patients.

Methods:

Machine-learning models were computed to test the classificatory accuracy of cognitive, volumetric [structural magnetic resonance imaging (sMRI)] and blood oxygen level dependent-connectivity (extracted from RS-fMRI) features, in single-modality and mixed classifiers.

Results:

The best and most significant classifier was the RS-fMRI+Cognitive mixed classifier (94% accuracy), whereas the worst performing was the sMRI classifier (∼80%). The mixed global (sMRI+RS-fMRI+Cognitive) had a slightly lower accuracy (∼90%), although not statistically different from the mixed RS-fMRI+Cognitive classifier. The most important cognitive features were indices of declarative memory and semantic processing. The crucial volumetric feature was the hippocampus. The RS-fMRI features selected by the algorithms were heavily based on the connectivity of mediotemporal, left temporal, and other neocortical regions.

Conclusion:

Feature selection was profoundly driven by statistical independence. Some features showed no between-group differences, or showed a trend in either direction. This indicates that clinically relevant brain alterations typical of MCI might be subtle and not inferable from group analysis.

Related Topics

    loading  Loading Related Articles