Effects of diisononyl phthalate on osteopenia in intact mice

    loading  Checking for direct PDF access through Ovid

Abstract

Osteopenia is characterized by bone loss and deterioration of trabecular bone, which leads to osteoporotic fractures. This disease is highly prevalent in industrialized areas and is associated with exposure to endocrine disrupting chemicals (EDCs). Diisononyl phthalate (DINP) is one of these EDCs and is mainly used as a plasticizer in flexible polyvinyl chloride (PVC) products. Although it is well known that exposure to DINP is harmful to humans, no studies have been reported concerning its contribution to osteopenia. Therefore, in this study, we injected DINP (2, 20, and 200 mg/kg) into C3H/HeN mice for 6 weeks and found that the uterus weight, bone (femur and tibia) weight, and bone length of the DINP-exposed mice were reduced compared to those of the SHAM group. On the other hand, body weight, the serum alkaline phosphatase (ALP) and inorganic phosphorus (IP) levels in the DINP treated mice were increased compared with those of the SHAM group. The tartrate-resistant acid phosphatase (TRAP) activity (bone resorption marker) was increased and the bone alkaline phosphatase (BALP) activity was lowered by the treatment with DINP as compared with the SHAM group. Furthermore, the microarchitecture of the femur and tibia in the intact mice was destroyed by the DINP injection. The tissue volume (TV), bone volume (BV), BV/TV, bone surface (BS), BS/TV, trabecular thickness (Tb.Th), and trabecular number (Tb.N) were reduced and the trabecular pattern factor (Tb.Pf), structure model index (SMI), and trabecular separation (Tb.Sp) were increased by the DINP injection. The bone mineral density (BMD) of the femur and tibia was lower in the DINP group than in the SHAM group. These results indicate that DINP contributes to an increased risk of osteopenia via destruction of the microarchitecture and enhancement of osteoclast activity.

Related Topics

    loading  Loading Related Articles