Advanced glycation end products induced IL-6 and VEGF-A production and apoptosis in osteocyte-like MLO-Y4 cells by activating RAGE and ERK1/2, P38 and STAT3 signalling pathways

    loading  Checking for direct PDF access through Ovid

Abstract

Advanced glycation end products (AGEs) are involved in osteopenia in people with diabetes and the elderly. Interleukin-6 (IL-6) and vascular endothelial growth factor-A (VEGF-A) are potent regulators of bone metabolism, and in bone tissue, osteocytes are an important source of these regulators. However, whether AGEs can directly regulate IL-6 and VEGF-A secretion by osteocytes is unknown. In this study, we evaluated the effect of AGEs on IL-6 and VEGF- A production as well as apoptosis in osteocyte-like MLO-Y4 cells. We also studied the involvement of receptor for advanced glycation end products (RAGE) and the role of extracellular signal-regulated kinases 1 and 2 (ERK1/2), P38 and signal transducer and activator of transcription 3 (STAT3) signalling pathways. We found that 100 μg/ml AGEs significantly induced apoptosis and up-regulated the expression of IL-6 and VEGF-A in MLO-Y4 cells. Additionally, AGEs significantly activated the ERK1/2, P38 and STAT3 signalling pathways. The ERK1/2 inhibitor U0126, the P38 inhibitor SB239063 and the STAT3 inhibitor S3I-201 all attenuated the effects of AGEs on MLO-Y4 cell apoptosis and IL-6 and VEGF-A secretion. Moreover, activation of the three signalling pathways was abolished by their respective inhibitors. Additionally, the AGEs-induced effects, including increased apoptosis, up-regulated expression of IL-6 and VEGF-A and activation of the three signalling pathways, were all abolished by pre-treating the osteocytes with the RAGE antagonist FPS-ZM1. Together, these data convince us that AGEs can activate the ERK1/2, P38 and STAT3 signalling pathways via RAGE and that their activation involves the AGEs-induced up-regulation of IL-6 and VEGF-A production as well as apoptosis in osteocytes. These results highlight the role of osteocytes in the regulation of bone metabolism by AGEs.

Related Topics

    loading  Loading Related Articles